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Abstract

In 1999, Jean-Paul Caltagirone and Jérôme Breil have developed in their paper [Caltagirone, J. Breil, Sur une méthode
de projection vectorielle pour la résolution des équations de Navier–Stokes, C.R. Acad. Sci. Paris 327(Série II b) (1999)
1179–1184] a new method to compute a divergence-free velocity. They have used the grad(div) operator to extract the sole-
noidal part of a given vector field. In this contribution we explain how this method can be considered as a real Helmholtz
decomposition and we present a stable approximation in the framework of spectral methods. Numerical results are pre-
sented to illustrate the efficiency of this approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The approximation of the grad(div) operator pervades many applied physics domains. Besides the ideal
ocean wave problem without Coriolis force and no friction [15], it arises in the Maxwell equations [11] and
in the Navier–Stokes equations for fluid flow problems when using a penalty formulation for the incompress-
ibility condition [14]. The problem also arises in the ideal linear magneto hydrodynamics equations when com-
puting the stability behavior of a fusion plasma device [16]. Another original application of this operator was
introduced by J.P. Caltagirone and J. Breil in their paper [13] where they used this operator to extract from a
given velocity field its solenoidal part. These authors had christened it vector projection which consists in solv-
ing the following problem: Let u* be a non-divergence free velocity field, find a couple of vector fields (u,v)
such that
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� $ðr � uÞ ¼ $ðr � u�Þ; in X; ð1:1Þ
u � n ¼ 0; on oX; ð1:2Þ
v ¼ uþ u�; in X; ð1:3Þ
991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

1016/j.jcp.2007.04.002

rresponding author.
ail addresses: ahusborde@enscpb.fr (E. Ahusborde), azaiez@enscpb.fr (M. Azaiez), calta@enscpb.fr (J.-P. Caltagirone).

mailto:ahusborde@enscpb.fr
mailto:azaiez@enscpb.fr
mailto:calta@enscpb.fr


14 E. Ahusborde et al. / Journal of Computational Physics 225 (2007) 13–19
where v and u are respectively divergence-free and curl-free. Here X � Rdðd ¼ 2; 3Þ is a simply connected and
bounded domain with Lipschitzian border. n denotes the outer unit normal along the boundary.

The objective of this note is on the one hand to explain how the previous system can be considered as a
Helmholtz decomposition step and on the other hand to present a stable discretization in the framework of
spectral methods. We end this note by presenting a relevant numerical experiment.

Some notations – The symbol L2(X) stands for the usual Lebesgue space and H 1ðXÞ, the Sobolev space,
involves all the functions that are, together with their gradient, in L2(X). The CðXÞ denotes the space of con-
tinuous functions defined in X.

2. Continuous problems and their variational formulations

In order to write the continuous problem in its variational form we introduce the relevant spaces of
functions.

Let H(div,X) denote the space (see [12])
Hðdiv;XÞ ¼ fw 2 ðL2ðXÞÞd ; divw 2 L2ðXÞg;

endowed with the natural norm
kwkHðdiv;XÞ ¼ ðkwk
2
ðL2ðXÞÞd þ kdivwk2

L2ðXÞÞ
1=2
:

The continuous problem we consider reads: Find u in H(div,X) it such that:
� $ðr � uÞ ¼ f; in X; ð2:4Þ
u � n ¼ 0; on oX; ð2:5Þ
where f is a given data.
Since curl (grad Æ) ” 0 we notice that a necessary condition for the existence of a solution to problems (2.4)

and (2.5) is that curl f = 0 and by consequence we can state the existence of a function uðx; yÞ such that
f ¼ gradu:
This leads to restate the basic problem as: For a given u 2 L2
0ðXÞ, find u 2 H(div,X) such that
� $ðr � uÞ ¼ $u; in X; ð2:6Þ
u � n ¼ 0; on oX; ð2:7Þ
where L2
0ðXÞ denotes the L2(X) subspace of functions having zero average values. This formulation is equiv-

alent to the dual one that reads: For a given u 2 L2
0ðXÞ find u 2 X(X) and w 2 L2

0ðXÞ such that:
u� $w ¼ 0; in X; ð2:8Þ
� r � u ¼ u; in X; ð2:9Þ
u � n ¼ 0; on oX; ð2:10Þ
where
X ðXÞ ¼ fw 2 Hðdiv;XÞ; w � n ¼ 0 on oXg:
This dual formulation can be rewritten as a classical Helmholtz decomposition, indeed: Let u* and v be two
vector fields such that $ Æ u* = u, u* Æ n = 0 and v = u + u*. The problem (2.8)–(2.10) then becomes: Find

v 2 X(X) and w in L2
0ðXÞ such that
v� $w ¼ u�; in X; ð2:11Þ
r � v ¼ 0; in X; ð2:12Þ
v � n ¼ 0; on oX: ð2:13Þ
Consequently the Helmholtz decomposition of the vector field u* can be achieved using either the primal for-
mulation (1.1)–(1.3) or its equivalent dual one (2.11)–(2.13).
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Variational formulation – One obtains the primal variational formulation of problem (2.6) and (2.7) by tak-
ing the inner product of 2.6 with any w 2 X ðXÞ. After integration by parts the problem becomes: Find

u 2 X(X) such that:
Z
X

$ � u$ � wdx ¼ �
Z

X
u$ � wdx 8w 2 X ðXÞ: ð2:14Þ
We do likewise to write the variational formulation of the dual problem (2.11)–(2.13) and we get : Find

(v;wÞ 2 X ðXÞ � L2
0ðXÞ such that
Z

X
v � wdxþ bðw;wÞ ¼

Z
X

u� � wdx; 8w 2 X ðXÞ; ð2:15Þ

bðv; qÞ ¼ 0; 8q 2 L2
0ðXÞ; ð2:16Þ
where the bilinear form b(w,q) defined over X ðXÞ � L2
0ðXÞ is given by:
bðw; qÞ ¼
Z

X
ðdivwÞqdx:
The variational formulation (2.15) and (2.16) is that of a saddle-point problem. One checks easily that the
bilinear form b(Æ,Æ) satisfies an inf–sup condition with a positive constant b (see [12,17]) such that:
sup
w2X ðXÞ

bðw; qÞ
kwkHðdiv;XÞ

P bkqkL2ðXÞ; 8q 2 L2
0ðXÞ:
3. Stable discretization

Providing a stable approximation of the primal and dual problem is a difficult task. Consequently we sup-
ply a non-exhaustive list of references dedicated to this question in the framework of spectral methods [3] and
finite element approximation [5–10]. Concerning the finite volume context one can see [13].

The equivalence between the two variational formulations (2.14) and (2.15), (2.16) brings us to propose a
stable discretization. For the sake of clarity we will suppose from now that d = 2 and X is a square ]�1,+1[2

and we limit ourself to the spectral approximation.
Let PNðXÞ represent the set of all polynomials of degree less or equal to N with respect to each space vari-

ables. We denote XN(X) the velocity space that is a subspace of ðPN ðXÞ � PN ðXÞÞ \ X ðXÞ. The finite dimen-
sional primal variational of (2.14) writes: Find uN 2 XN(X) such that
Z

X
$ � uN$ � wN dx ¼ �

Z
X

uN divwN dx; 8wN 2 X N ðXÞ: ð3:17Þ
For any integer N, PN ðKÞ represents the set of all polynomials of degree 6N on K = ]�1,+1[ and P0
N ðKÞ coin-

cides with PNðKÞ \ H 1
0ðKÞ. Since spectral methods make an extensive use of Gaussian quadrature rules, we

recall the basic properties of the Gauss–Legendre (GL) and Gauss–Lobatto–Legendre (GLL) quadratures
schemes.

� GL quadrature rule: A unique set of N nodes sj and associated coefficients xj exist (sj 2 K;xj > 0; real,
1 6 j 6 N) such that
8U 2 P2N�1ðKÞ;
Z 1

�1

UðsÞds ¼
XN

j¼1

UðsjÞxj:
The nodes sj (1 6 j 6 N) are solutions to LN = 0 where LN denotes the Legendre polynomial of degree N.
� GLL quadrature rule: Let n0 = �1 and nN = 1. A unique set of nodes nj 2 K; ð1 6 j 6 N � 1Þ and (N + 1)

real, positive coefficients qj exist, such that
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8U 2 P2N�1ðKÞ;
Z 1

�1

UðnÞdn ¼
XN

j¼0

UðnjÞqj:
The nodes nj (0 6 j 6 N) are the solutions to ð1� n2ÞL0N ¼ 0.

We also introduce the canonical polynomial interpolation basis hiðxÞ 2 PN ðKÞ built on the GLL nodes and
given by the relationships:
hiðxÞ ¼ �
1

NðN þ 1Þ
1

LN ðniÞ
ð1� x2ÞL0N ðxÞ
ðx� niÞ

; �1 6 x 6 þ1; 0 6 i 6 N ; ð3:18Þ
with the elementary cardinality property
hiðnjÞ ¼ dij; 0 6 i; j 6 N ; ð3:19Þ
where dij is Kronecker’s delta symbol. We further introduce the canonical polynomial interpolation basis
~hjðxÞ 2 PN�1ðKÞ built on GL nodes
~hjðxÞ ¼
1

L0N ðfjÞ
LN ðxÞ
ðx� fjÞ

; �1 6 x 6 þ1; 1 6 j 6 N : ð3:20Þ
The functions (3.20) satisfy the same property (3.19) with respect to the GL nodes fj.
In [3] we have shown that a stable and optimal spectral scheme exists to solve (3.17). It uses a GLL/GL–

GL/GLL mesh for the two components of the velocity field and corresponds to: Find uN 2 XN(X) such that
ð$ � uN ;$ � wNÞGN ¼ �ðuN ; divwNÞGN ; 8wN 2 X N ðXÞ; ð3:21Þ

with, for instance:
X N ðXÞ ¼ ðP0
N ðKÞ � PN�1ðKÞÞ � ðPN�1ðKÞ � P0

N ðKÞÞ

and for any couple of scalar fields p, q:
ðp; qÞGN ¼
XN

i¼1

XN

j¼1

ðpqÞðsi; sjÞxixj: ð3:22Þ
Using the basis functions (3.18) and (3.20) the velocity components write
uxN ðx; yÞ ¼
XN�1

k¼1

XN

‘¼1

ux
k‘hkðxÞeh‘ðyÞ; ð3:23Þ

uyN ðx; yÞ ¼
XN

k¼1

XN�1

‘¼1

uy
k‘
ehkðxÞh‘ðyÞ; ð3:24Þ
where ux
k‘ (resp. uy

k‘) denotes uxðnk; f‘Þ (resp. uyðfk; n‘Þ), and the boundary conditions have been included in the
expansions.

Problem (3.21) leads to an algebraic problem
Ku ¼ f; ð3:25Þ

where K denotes the (symmetric) stiffness matrix. The stiffness matrix has two-by-two block structures,
namely
K ¼
Kxx Kyx

Kxy Kyy

� �
;

where Kxx and Kyy denote the classical stiffness matrices similar to the discretization of the Laplacian operator,
and Kxy and Kyx (transpose of each other) result from the weak formulation of the mixed derivatives present in
the grad(div) operator. The quantities u and f represent respectively the vector with the nodal values as the
unknowns and the data �ðuN ;div wN ÞGN .
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We now switch to the discrete form of the dual variational formulation (2.15), (2.16). As proved in [3], a
stable spectral element to solve this problem is made of XN(X) and MN(X) respectively for the ‘‘velocity’’
(v) and ‘‘pressure’’ (w) fields, where:
MNðXÞ :¼ PN�1ðXÞ \ L2
0ðXÞ:
Consequently, the spectral approximation of (2.15), (2.16) reads: Find ðvN ;wN Þ 2 X N ðXÞ �MN ðXÞ such that
ðvN ;wN ÞGL
N þ ðwN ;$ � wN ÞGN ¼ ðu�N ;wN ÞGL

N ; 8wN 2 X N ðXÞ; ð3:26Þ
ð$ � vN ; qNÞ

G
N ¼ 0; 8qN 2 MN ðXÞ: ð3:27Þ
One can easily verify (see [2,1]) that:

Lemma. The following uniform inf–sup condition on b(Æ,Æ) holds: "qN 2MN(X),

bðw ; q Þ

sup

wN2X N ðXÞ

N N

kwNkHðdiv;XÞ
P b0kqNkL2ðXÞ: ð3:28Þ
The constant b 0 > 0 does not depend on N.
The implementation of the discrete variational problem (3.26), (3.27) induces a symmetric algebraic system:
MN Uþ DNW ¼ f; ð3:29Þ
DT

N u ¼ 0: ð3:30Þ
The vector u contains the velocity degrees of freedom on the staggered grids, while W represents the discrete
values of wN on GL grid. The diagonal mass matrix MN is associated with the discrete inner product
ðuN ;wN ÞGL
N ¼

XN

i¼0

XN

j¼1

ðuxwxÞðni; sjÞqixj þ
XN

i¼1

XN

j¼0

ðuywyÞðsi; njÞxiqj: ð3:31Þ
The rectangular matrix DN corresponds to the discretization of the variational form ð$ � vN ; qNÞ
G
N . In (3.29) f

represents the quantity ðu�N ;wN ÞGL
N .

The algebraic system (3.29), (3.30) is solved using the Uzawa algorithm: One eliminates the velocity from
(3.29) that is then inserted in (3.30)
DT
N M�1

N DNW ¼ DT
N M�1

N f:
The existence of the solution of the algebraic square system (3.25) is ensured by the fact that the second mem-
ber is in the range of the discrete operator. This property must be numerically checked before any resolution.
In addition one can verify that the image is orthogonal to the kernel and thus their intersection is reduced to
the null vector. The latter property makes it possible to ensure the uniqueness of the solution at least when the
system is solved by an iterative method of the Krylov type (Conjugate Gradient in our case) while starting the
iterative algorithm by an initial guess in the range (zero for example).

4. Numerical results

To illustrate the equivalence and compare the efficiency of the two approaches of the Helmholtz decompo-
sition, we have carried out numerical experiments in the square X = ]�1,+1[2 assessing the accuracy of the two
methods. As example we studied the case u* = v � $w with:
vðx; yÞ ¼ ð� sinðpxÞ cosðpyÞ; cosðpxÞ sinðpyÞÞ;
w ¼ � sinðpðxþ yÞÞ:
The two components v and w are approximated respectively by vN and wN. As is well known, the spectral
approximation error of analytical functions converges exponentially towards zero as qN where N is the poly-
nomial degree and q 2 ]0,1[ (see [4]). We expect the same error behavior in the present case.
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Fig. 1 exhibits the computation for the primal formulation (3.21). On a semi-logarithmic scale for the L2

error as a function of the polynomial degree N, one observes the typical spectral decay of the error
kv� vNkðL2ðXÞÞ2 (see circles), and of kcurlðu�N � vNÞkL2ðXÞ (see squares), while kdivvNkL2ðXÞ (see triangles) is nearly

zero machine.
Fig. 2 gives the same information as Fig. 1 except for the fact that the various quantities have been com-

puted with the dual formulation (3.26) and (3.27). The numerical results are quite close to those displayed on
Fig. 1.

The method we used to solve the algebraic system (3.25) is the Conjugate Gradient (CG) algorithm. Table 1
gives the number of iterations needed to converge up to 10�14. This number remains low which makes the
primal approach attractive.
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Fig. 1. Semi-logarithmic plot for the L2 error as a function of N using the primal formulation. s :¼ kv� vNkðL2ðXÞÞ2 ,
} :¼ kcurlðu�N � vN ÞkL2ðXÞ and M :¼ kdivvNkL2ðXÞ.
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Fig. 2. Semi-logarithmic plot for the L2 error as a function of N using the dual formulation. s :¼ kv� vNkðL2ðXÞÞ2 ,
} :¼ kcurlðu�N � vN ÞkL2ðXÞ and M :¼ kdivvNkL2ðXÞ.

Table 1
Number of iterations used by CG to solve (3.25)

N 4 8 12 16 20 24
CG 2 7 7 7 4 9
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5. Conclusion

We have shown that the grad(div) operator offers an efficient tool for the Helmholtz decomposition of a
vector field. We have proposed two ways to carry out this decomposition: We can use either the primal for-
mulation or the dual one. The calculations performed on analytical functions for both formulations give sim-
ilar results and clearly show the accuracy of the method.
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